

Securing European patient access to antibiotics

Christine Ardal, MBA, PhD

Disclaimer - Content Slide

- ► The views and opinions expressed in the following PowerPoint slides are those of the individual presenter and should not be attributed to Drug Information Association, Inc. ("DIA"), its directors, officers, employees, volunteers, members, chapters, councils, Communities or affiliates, or any organization with which the presenter is employed or affiliated.
- ► These PowerPoint slides are the intellectual property of the individual presenter and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. Drug Information Association, Drug Information Association Inc., DIA and DIA logo are registered trademarks. All other trademarks are the property of their respective owners.

DIA 2020

GLOBAL ANNUAL MEETING

Disclosures

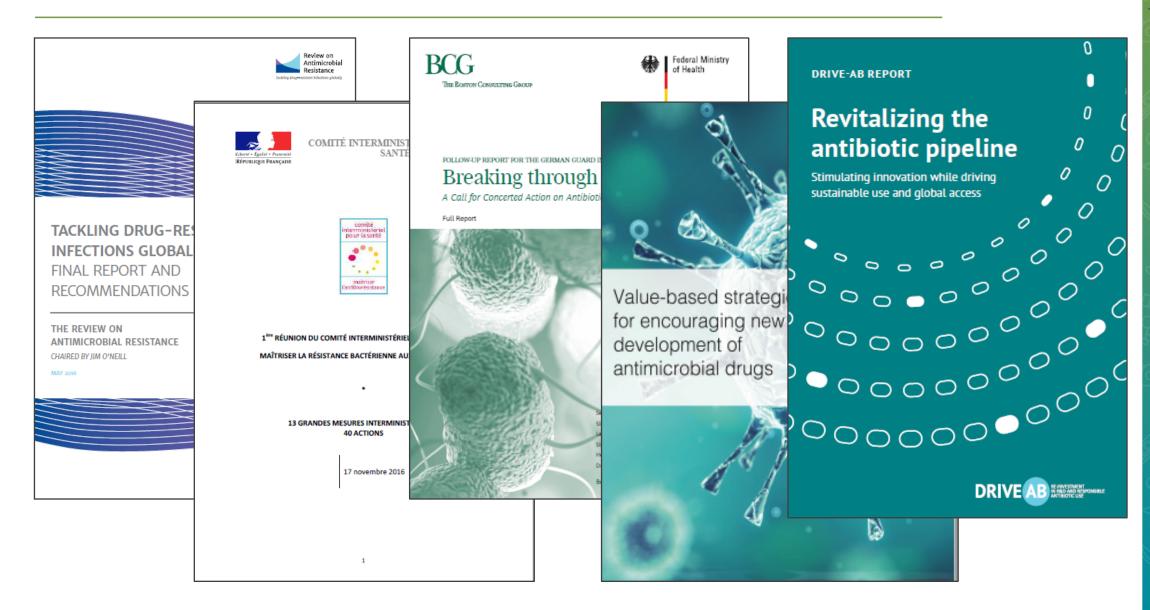
- Christine Årdal is a senior advisor at the Norwegian Institute of Public Health (NIPH) and the co-lead of the research and innovation work package of the EU Joint Action on Antimicrobial Resistance and Healthcare-Associated Infections (EU-JAMRAI).
- ► The views expressed in this presentation should not be considered to reflect the positions of NIPH, the Norwegian government, or participating governments in EU-JAMRAI.
- ► I am currently receiving external grant financing from the European Union (EU-JAMRAI, grant number 76129) and the Norwegian Research Council (grant number 300867).

DIA 2020

GLOBAL ANNUAL MEETING

About EU-JAMRAI

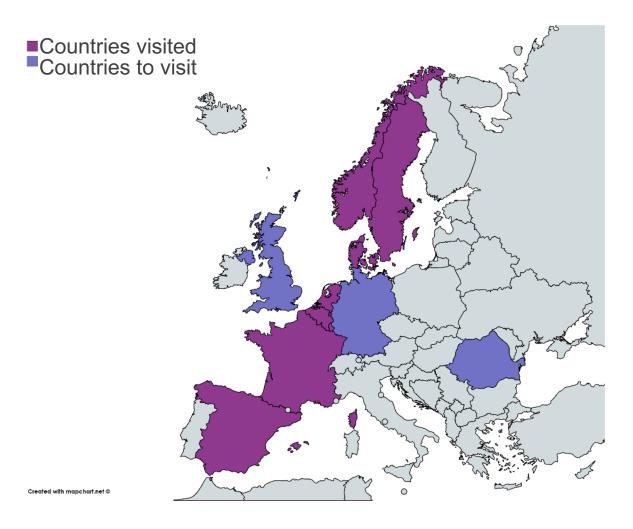
- Joint Action's mission is to foster synergies related to AMR and HAI among EU Member States (28 participating countries)
- In research and innovation work package, one of our aims is to:


Explore and detail European strategies to implement mechanisms to increase innovation and other means to fight against AMR and HAI

DIA 2020

GLOBAL ANNUAL MEETING

Calls for antibiotic innovation incentives



DIA 2020

GLOBAL ANNUAL MEETING

Country interviews

Objective: To gain a better understanding of current political willingness and barriers to implement actions regarding:

- Innovation of new antibacterial treatments
- Access to existing antibiotics

DIA 2020

GLOBAL ANNUAL MEETING

Preliminary results...

1. Strong desire to find common solutions for both existing and new antibiotics

- Shortages of existing antibiotics are more pressing concern than lack of new antibiotics
- Shortages result in potentially suboptimal treatment

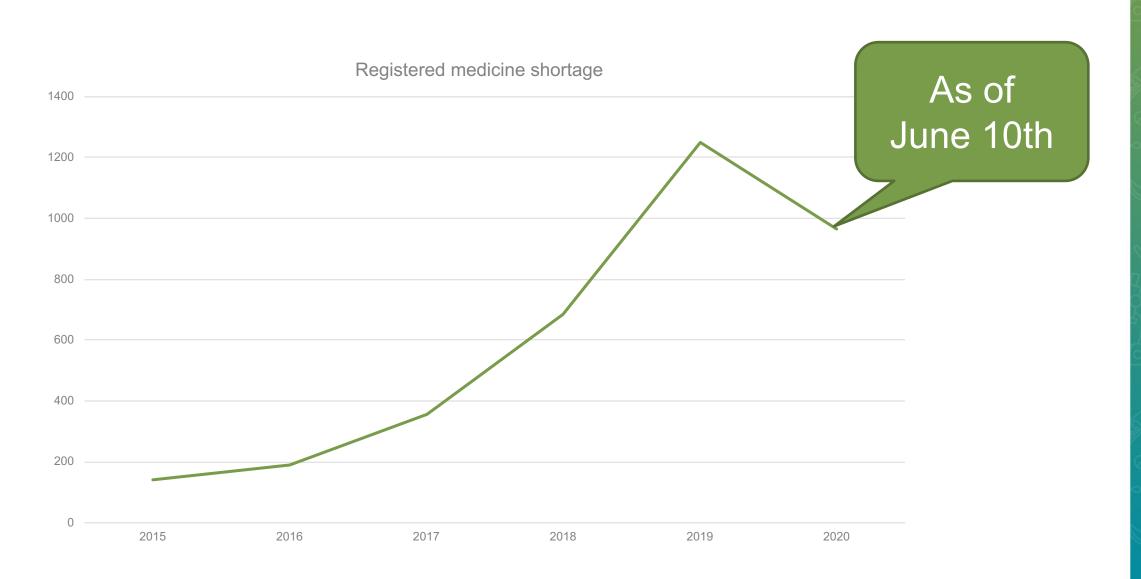
DIA 2020

GLOBAL ANNUAL MEETING

Shortages are increasing

Antibiotic Shortages: Magnitude, Causes and Possible Solutions

Norwegian Directorate of Health, Oslo, Norway 10-11 December 2018


"The experiences of several European countries indicate that shortage of antimicrobial agents is common, and the frequency of shortages seems to be increasing..."

DIA 2020

GLOBAL ANNUAL MEETING

Medicine shortages in Norway

DIA 2020

GLOBAL ANNUAL MEETING

Uncertainty about where the risks lie.

Difficult to prevent supply disruptions because of lack of

transparency

"To give a real-life example, a global shortage of the key antibiotic piperacillin-tazobactam was caused by an explosion at a Chinese factory – the single producer of the API needed to produce the medication."

DIA 2020

GLOBAL ANNUAL MEETING

Transparency also has environmental benefits

Regulatory Toxicology and Pharmacology 53 (2009) 161-163

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

Commentary

Transparency throughout the production chain—a way to reduce pollution from the manufacturing of pharmaceuticals?

D.G. Joakim Larsson a,*, Jerker Fick b

ARTICLE INFO

Article history: Received 3 November 2008 18 December 2008 Available online 29 January 2009

Keywords: Bulk drugs

ABSTRACT

Recent findings have shown that wastewater from bulk drug production can be a source of very high environmental concentrations of drugs in certain locations. The release of active ingredients is often not specifically regulated, and thus rapid initiatives from the industries themselves are warranted. Possible ways to stimulate action include changes in local and international regulations, including the implementation of appropriate environmental standards within existing industry guidelines as well as demands from prescribers and consumers of medicines. The lack of readily available information regarding the origin of drugs and the environmental impact of the production, however, prevents consumers

DIA 2020

GLOBAL ANNUAL MEETING

^a Department of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Göteborg, Sweden

^b Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden

Transparency becoming more common

Supplier List

The Apple Supplier List details our top 200 suppliers based on spend, and outlines the supplier facilities which provide services to our supply chain.

Supplier Name	Manufacturing Location					
3M Company	905 Adams Street, Hutchinson, Minnesota, United States					
3M Company	5500 Oaza Osanagi, Higashine, Yamagata, Japan					
3M Company	3406 E. Pleasant Street, Knoxville, Iowa, United States					
3M Company	235 Zhongyuan Road, Suzhou, Jiangsu, China					
3M Company	18 Jangan-Gongdan 1 Gil, Jangan-myeon, Hwaseong, Gyeonggi-Do, Korea					
3M Company	1425 Stokke Parkway, Menomonie, Wisconsin, United States					
3M Company	1030 Lake Road, Medina, Ohio, United States					
AAC Technologies Holdings Incorporated	No. 8, Fengqi Road, Hi-Tech. Industry Development Area, Wujin District, Changzhou, Jiangsu, China					
AAC Technologies Holdings Incorporated	No. 66 Yanghuxi Road, Wujin District, Changzhou, Jiangsu, China					
AAC Technologies Holdings Incorporated	Building 5, 6th floor, Nanyou Tianan Industry Park, Dengliang Road, NanShan District, Shenzhen, Guangdong, China					
Advanced Semiconductor Engineering Incorporated	No. 2, Chuangyi South Road, Nanzi District, Kaohsiung, Taiwan					
Advanced Semiconductor Engineering Incorporated	No. 501 Longgui Road, Jinqiao Export Processing (South) Zone, Shanghai, China					
Advanced Semiconductor Engineering Incorporated	No. 188, Su Hong Xi Road, Suzhou Industrial Park, Suzhou, Jiangsu, China					
Advanced Semiconductor Engineering Incorporated	No. 1558, Zhang Dong Road, Zhangjiang Hi-Tech Park, Shanghai, China					
Advanced Semiconductor Engineering Incorporated	No. 107, Neihuan North Road, Nanzi District, Kaohsiung, Taiwan					
Advanced Semiconductor Engineering Incorporated	76, Saneopdanji-gil, Paju, Gyeonggi-Do, Korea					
Advanced Semiconductor Engineering Incorporated	73 Kai Fa Road, Nantze Export Processing Zone, Kaohsiung, Taiwan					
Advanced Semiconductor	1F, No. 115 Nei-Huan North Road, Nantze Export Processing Zone, Kaohsiung, Taiwan					

DIA 2020

GLOBAL ANNUAL MEETING

Preliminary results...

2. Unsure of the actual value of new antibiotics

- Non-inferiority trials
- Clinical trial designs do not always compare against antibiotic(s) most used in practice
- Label is often for skin infections, not resistant infections

DIA 2020

GLOBAL ANNUAL MEETING

Value uncertainty results in low prices

Lower price than comparator

Price parity with comparator

Recent assessments of Haute Autorité de Santé of antibiotics

Name (molecule)	Date	ASMR I	ASMR II	ASMR III	ASMR IV	ASMR V
XYDALBA (dalbavancine)	2016/12/04					х
ZAVICEFTA, (ceftazidime/avibactam)	2016/11/30				х	
ZERBAXA, (ceftolozane/tazobactam)	2016/07/06					х
DELPRIM (triméthoprime)	2016/06/22					х
ORBACTIV (oritavancine)	2015/11/18					х
SIVEXTRO (tédizolide)	2015/11/04					х

Source: Da Volterra (July 2019)

GLOBAL ANNUAL MEETING

Preliminary results...

3. Interest in new models to secure access

- European solutions, rather than country-specific
- For antibiotics with demonstrated ability to meet unmet,
 public health needs (even through small trials)

DIA 2020

GLOBAL ANNUAL MEETING

European design constraints

National ownership

- Antibiotic prescribing guidelines and stewardship mechanisms
- Health technology assessment
- Medicines unit pricing
- Medicines reimbursement

European potential

- EMA guidance identifying "critical" antibiotics
- Centralized European fund (European Investment Bank?) to pay out "top-up" access payments
- Stewardship requirements for producers

DIA 2020

GLOBAL ANNUAL MEETING

Thank You

Christine Ardal

Co-chair, Research and Innovation

EU Joint Action on Antimicrobial Resistance and Healthcare-Associated Infections (EU-JAMRAI)

@Christinerdal

Join the conversation #DIA2020

